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I am here today to try to influence future trends in the application of mathematics by you, the DoD
community, because I believe that we have within our grasp quantum leaps in the DoD’s ability to
fulfill its mission. During the last ten years, through the innovations in computer science and
engineering, there have been dramatic improvements in speed of computational platforms available.
What is only beginning to be realized is that without fast algorithms that overcome the curse of
dimensionality, all this computational power is of limited value.

Over the last ten years a number of extraordinary algorithms have been developed that owe their
superior characteristics to mathematical representations chosen in an appropriate physically
motivated waveform domain. Such representations, based on a mathematical field known as
harmonic analysis, have led to breakthroughs in conquering two of the main sources of high
dimensionality, namely, computational complexity and degrees of freedom in data. This
mathematical machinery has now been demonstrated sufficiently many times in different contexts
that a compelling case can be made that this powerful set of methods is broadly applicable and will
have a pervasive and lasting impact on computational science and on DoD applications. I would like
to highlight two important areas where high payoffs appear indicated if all-out assaults are made.
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What’s Lurking Over the Horizon?What’s Lurking Over the Horizon?

+ Well-conditioned fast (near-linear complexity) algorithms
for analysis and simulation of physical phenomena:
+ Electronic device and antenna field simulation.
+ Computational quantum mechanics.
+ Modeling biomolecular interactions.
+ Navier-Stokes solutions.

+ Rapid, effective exploitation of high-dimensional data:
+ Bioactivity prediction from molecular structure.
+ Strategic/tactical planning from digital maps and

imagery.
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The first impact area is in the development of what I will call well-conditioned fast algorithms. I will
give examples where accurate, near-linear complexity algorithms have been developed for analyzing
and/or simulating a broad spectrum of physical phenomena on scales that would not be possible
otherwise, even given optimistic assumptions regarding hardware. The methods all use mathematical
representations that derive their efficacy from the fact that they are well-matched to the underlying
physical phenomena. I will try to highlight the main reasons why the mathematical machinery being
developed is so revolutionary. I list here some of the notable problem areas where these methods are
expected to provide big future payoffs, some of which might be surprising to you.

The second critical impact area I will discuss is in the exploitation of high-dimensional data, i.e.,
data with a high number of degrees of freedom. The main issue in such applications is the ability to
mathematically represent the data to allow searches to be performed in spaces where the number of
degrees of freedom is low. As will be illustrated, the same paradigm of matching representation to
the underlying physical phenomena is invaluable to successful data exploitation. Important data
exploitation challenges confront us in virtually all applications, including the prediction of function
from structure for use in biological warfare defense and the exploitation of large and diverse map and
imagery databases for military planning.
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Well-Conditioned Fast Algorithms
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Method of MomentsMethod of Moments

þ 20K on
supercomputers.

þ 100K+ on superduper
computers.

þ 1,000K+: no way!

þ Can’t ensure accuracy.

þ Complicated meshing
schemes required.
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The first example is the most spectacular to date that can be reported. The radar cross section (RCS)
of bodies that are very large relative to a wavelength, but whose surfaces have small-scale features
which cannot be resolved by high frequency asymptotic techniques, has historically been calculated
by the frequency domain method of moments (MoM), which scales as N2. The size of the matrix, N,
is proportional to the surface area of the object being modeled and is typically on the order of
1,000,000 or more for full-size aircraft. Hence, RCS calculations using MoM can be applied only to
relatively small components of extended objects, even on supercomputers. In addition, such methods
are severely limited by an inability to ensure accuracy and the need for complicated mesh generation
schemes.
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Fast Multipole MethodFast Multipole Method

þ 20K on desktops.

þ 100K+ on servers.

þ 1,000K+ on
supercomputers.

þ Prescribable
accuracy for low
additional cost.

þ No complex mesh
generation
procedures required.
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In contrast, the Fast Multipole Method (FMM) will allow the routine calculation of electromagnetic
scattering off of full-scale aircraft and missiles at high frequencies with prescribable accuracy and
dramatically simplified discretization requirements. Currently, problems are being solved on high-
end workstations by Boeing and others that previously required massively parallel computing
capability.
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Sparse Decomposition of ZSparse Decomposition of Z

Z’ V’ T V

+Z =

Integral equation formulation reduces to solving dense
linear N x N system ZI = V, where N scales as surface
area. Z has sparse decomposition:

Results in Results in OO(N log N) vs. (N log N) vs. OO(N(N22) algorithm and) algorithm and
substantial memory savings!substantial memory savings!
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The RCS is computed by discretizing an integral equation, leading to a dense linear system ZI = V.
Solving this N x N dense system iteratively, as is usually done to minimize computation, requires
O(N2) operations, since the matrix Z is applied to successive approximations of the desired vector I
until convergence occurs. Z can be regarded as the matrix of interactions amongst N scatterers. FMM
achieves a reduction in the cost of computing and applying Z by using a mathematical formulation
that sub-blocks Z into groups of scatterers and exploits the fact that the physics allows treating the
near- and far-field interactions separately. This formulation results in remarkably sparse matrices.

In the near-field, interactions must all be computed directly, leading to a banded matrix. However, in
the far field, it turns out that because scattering just behaves like a collection of plane waves, there is
a block diagonal operator that simultaneously diagonalizes all far field interaction submatrices!
Recursively applying this scheme in a hierarchical fashion at successively finer scales leads to an
O(N log N) algorithm. Furthermore, in contrast to previous methods, a suitably chosen combined
field integral equation formulation leads to a well-conditioned matrix system, resulting in
prescribable accuracy in the computed solutions. Use of high order methods allows significant
matrix size reductions and additional digits of accuracy to be achieved with low additional cost.
Finally, the well-conditioned formulation, combined with the use of quadrature formulae, greatly
simplifies the discretization requirements to a sampling density issue on the surface, compared to the
usual complicated scheme requiring a combination of interpolation on facets, as well as aspect ratio
control.
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Space Time Adaptive Processing - ISpace Time Adaptive Processing - I

Covariance matrix
(Monostatic ground clutter)

Wavelet Block Filtered Rearranged
Covariance Matrix
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In this example, we illustrate the ability of adapted waveforms such as wavelets to efficiently
represent coherence in physical phenomena. The matrix on the left is a space time covariance matrix
for data representative of monostatic ground clutter in the main beam of a missile antenna. On the
right is the matrix that has been compressed using wavelets after a physically appropriate
rearrangement of elements. This compression confirms that there is little information in the return.
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Space Time Adaptive Processing - IISpace Time Adaptive Processing - II

Covariance matrix
(Wideband jamming interference)

Wavelet Block Filtered Rearranged
Covariance Matrix
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This example illustrates similar compression methods applied to wideband jamming interference
covariance matrices. In this case, the left hand matrix is the space time covariance matrix for a single
Pulse Repetition Interval (PRI) using 4 channels and 8 time taps. The compression algorithm was
designed to take advantage of the block structure of the covariance matrix. Ninety percent of the
resulting matrix elements are less than 1% of the maximum matrix element. Furthermore,
preliminary work indicates that meaningful compression is possible without loss of signal to noise.
The resulting matrix is certainly not as highly compressed as in the previous slide, but nonetheless
indicates the strong potential for significant reductions in the processing required by the missile in
seeking its target, assuming appropriate algorithms for processing the compressed matrix can be
constructed.
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Fast Poisson SolversFast Poisson Solvers

þ Only few times greater cost than standard
solver on a uniform rectangular mesh.

þ Prescribable accuracy for low additional
cost.

þ Does not require complex mesh
generation procedures.
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Finally, I would like to discuss a 2D example to indicate that well-conditioned fast algorithmic
formulations will be applicable even to problems that require volume, as opposed to surface
discretization. Given is a 2D problem for which one would like to compute the potential field inside
the cavity displayed on the left with the boundary of the volume mesh. The diagram on the right
shows the equipotential lines for the computed solution. This problem is extremely difficult to solve
using standard methods, both because of the geometric complexity and the unreasonable solution
time that would be required. However, using a fast Poisson solver developed using the techniques
described here, the time required to solve a problem of arbitrary geometric complexity is only a few
times greater than a standard solver using a uniform rectangular mesh on a rectangular domain in
which the problem domain can be embedded. Furthermore, the boundary and interior discretizations
can be performed totally independently.
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Well-conditioned Fast AlgorithmsWell-conditioned Fast Algorithms

+ Orders-of-magnitude faster methods (near-linear
computational complexity).

+ Prescribable accuracy (well-conditioned matrices)
at low cost (easy to design high order schemes).

+ Mathematical theory and analytic machinery to
reduce computational complexity and memory
requirements (sparse matrices).

+ Obviate need for complex meshing procedures.
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Here are the reasons why you should pay attention to harmonic analysis-based methods.
Mathematical theory and analytic machinery have been developed over the past ten years that allow
the design of orders-of-magnitude faster algorithms, having in most cases near-linear computational
complexity. These methods also result in significant memory usage reductions, which is often needed
to achieve faster algorithms. The resulting algorithms guarantee prescribable accuracy at low
additional cost for additional precision. If that weren’t already impressive enough, these schemes
involve greatly simplified discretization schemes over those currently required by other methods and
should result in an enormous savings to the DoD because of the reduction in time and cost required
to discretize complex geometries.

So hopefully, I’ve piqued your interest in these methods.
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Q: When can well-conditioned fast
algorithms be developed?

A: Methods are believed to be applicable to
most physical problems!
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Certainly when the underlying physical phenomena are well understood, there is a good chance that
well-conditioned fast algorithms can be developed. But as we saw in the space time adaptive
processing example, even when the underlying physical process is not initially well understood, the
use of representations appropriate to the phenomena can be used not only to derive fast algorithms,
but also to shed light on the phenomena themselves.
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High-Dimensional Data Exploitation
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Q: What’s hard about high-dimensional
data?

A: Statistical theory is impractical for large
number of degrees of freedom!
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Much attention in data exploitation problems has been on pattern recognition and statistical methods.
But now we are faced with data sets with huge numbers of degrees of freedom to which statistical
methods cannot be realistically or correctly applied due to overwhelming data requirements.
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Hierarchical Multiscale ApproachHierarchical Multiscale Approach
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This is a notional view of a hierarchical, multiscale approach. When traveling across the country to
the East Coast, only coarse geographical information about relative locations of states is needed.
Only upon landing in Washington, D.C., does one need more detailed information on major roads to
get to the approximate vicinity of the Mall. When one is near the Mall, then one needs even finer
information about surface streets and only when one is actually on Pennsylvania Avenue is house
number information finally needed to locate the White House. In other words, one zeros in in a
hierarchical fashion at successively finer scales. Clearly, just storing all house numbers in the United
States is not a winning strategy.
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A Proposed StrategyA Proposed Strategy

Find hierarchical, multiscale mathematical
data representation that

+Is matched to the application (model).

+Allows fast application-specific computer
manipulation.

+Allows features of interest to be projected into
low-dimensional space.
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The paradigm of processing in a physically appropriate waveform domain is just as powerful in this
problem domain as in the design of well-conditioned fast algorithms. In fact, in automatic target
recognition, use of adapted waveform bases of functions such as local trignometric transforms,
wavelets, and wavelet packets is based on exactly this paradigm. This methodology is generating
considerable interest and excitement because of the ability to efficiently represent coherent
information present in signal data. Work to date on development of fast processing schemes using
adapted waveform analysis has been extremely promising. The effectiveness of these adapted
waveforms lies in their ability to represent complex data in a hierarchical, multiscale fashion.
Preliminary indications are that use of these tools should allow dramatic reductions in the required
number of degrees of freedom for a broad spectrum of applications.
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Longbow Proof-of-Principle DataLongbow Proof-of-Principle Data

Best Wavelet FeaturesStandard Fourier Features

þ Over 7% average classification performance improvement.

þ 3.5X decrease in required computation compared to existing
Longbow classifier.
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In this slide, using Longbow proof-of-principle data, we give a concrete example of dimensionality
reduction enabled by a good representation. In an insertion demonstration project, researchers at Yale
University and Lockheed Martin succeeded in designing wavelet-based features that resulted in
significant classification improvements over the baseline Longbow Fire Control Radar high
resolution ranging system. The plots on the left show the standard Fourier features currently being
used to distinguish between two different target classes. In this coordinate system, it is extremely
difficult to differentiate between the two targets in any low-dimensional projection. On the other
hand, using the two wavelet features shown on the right, a projection can be found that allows
reasonably good separation of the targets. This type of processing resulted in an overall classification
improvement of over 7% and a 3.5-fold reduction in classification processing required compared to
the existing Longbow classifier. The processing throughput gains are due not only to the use of fast
wavelet algorithms, but also to the resulting simplifications in the classification algorithms that were
enabled by use of a better representation.
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Multiscale RepresentationMultiscale Representation
PossibilitiesPossibilities

+ Bioactivity prediction from molecular structure
+ Long-range electrostatic effects.
+ Binding sites.
+ Local topology.
+ 3D local electrostatic field.

+ Digital maps and imagery for strategic/tactical
planning
+ Region of world.
+ Country.
+ Topography.
+ Strategically/tactically significant landmarks.
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The ability to predict biomolecular interactions would be extremely useful in developing strategies to
counter biological warfare agents. There is significant potential for harmonic analysis-based methods
to improve simulation capability for molecular interactions. In addition, such methods are a much-
needed first step in representing 3D molecular structure to allow effective exploitation of the
burgeoning data being produced worldwide. Some important application-specific ingredients
necessary in hierarchical, multiscale representations of molecular structure are listed.

Harmonic analysis-based methods are undoubtedly also a necessary ingredient in a timely and
effective strategy for exploiting digital maps and imagery in military planning.

In both of these applications, as in any signal processing application, an effective representation is
only the first step in development of a complete statistical theory for actually mining the data.
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The MessageThe Message

MATHEMATICS IS MATHEMATICS IS STILLSTILL  POWERFUL! POWERFUL!

USE IT!USE IT!
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Those of you who heard my talk last year may remember my encouragement to use mathematics,
since it is powerful. I can’t do any better than to reiterate that message. However, my purpose in
alerting you to these particular opportunities is that pulling off the revolution I have described today
requires the creativity and focused energy of not just mathematicians, but a broad cross-section of the
scientific, computing, and engineering communities. Let’s go to it!
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